top of page

Theodore Alexandrov

EMBL, Germany

4 May 2020 at 15:30:00

SpaceM method for single-cell metabolomics and lipidomics

Recent discoveries put metabolism into the spotlight. Metabolism not only fuels cells but also plays key roles in health and disease in particular in cancer, inflammation, and immunity. In parallel, emerging single-cell technologies opened a new world of heterogeneous cell types and states previously hidden beneath population averages. Yet, methods for discovering links between metabolism, cell states, metabolic plasticity and reprogramming on the single-cell level and in situ are crucially lacking. Our research aims to bridge this gap. First, I will explain how the emerging technology of imaging mass spectrometry can be used for the spatial profiling of metabolites, lipids, and drugs in tissues. I will present our cloud and Artificial Intelligence-powered platform METASPACE which is increasingly used across the world. In the second part of my talk I will focus on our method SpaceM for spatial single-cell metabolomics in situ. We applied SpaceM to investigate hepatocytes stimulated with fatty acids and cytokines, a model mimicking the inflammation-associated transition from the fatty liver disease NAFLD to steatohepatitis NASH. We characterized the metabolic state of steatotic hepatocytes and metabolic plasticity associated with the inflammation. We discovered that steatosis and proliferation take place in distinct cell subpopulations, each with a characteristic spatial organization and metabolic signatures. Overall, such methods open novel avenues for understanding metabolism in tissues and cell cultures on the single-cell level.

Watch Webinar
bottom of page